当前位置:首页 > 创业圈 > 创业 > 创业人物 > 正文

人工智能风口来了 看今年AI创业5大趋势

来源:《AI世代》 发布时间: 2017-03-17 15:39:27 编辑:诚富

导读:美国风险投资家布拉德福特·克洛斯近日撰文,总结了2017年人工智能创业圈的5大预测。

美国风险投资家布拉德福特·克洛斯近日撰文,总结了2017年人工智能创业圈的5大预测。

A. 聊天机器人覆灭

在科技圈内,当我们谈到bot时,通常指的是一种软件代理,往往通过4大关键概念使之与随心所欲的程序区分开来:对环境的反应、自动化、目标导向和持久性。

企业则将bot的定义阐述成“任何形式的商业程序自动化”,并且创造了RPA这样一个词,意思是机器人处理自动化。

虽然商业流程自动化肯定会在未来几十年继续发展,但目前围绕“bot”的狂热指的是一种通过语音和聊天实现的对话界面,也就是聊天机器人,这种模式将在2017年开始覆灭。原因如下:

1.消费互联网市场的社交和个性化大战提供了较好的参考。最终胜出的个性化平台是Facebook,它同时也是最终胜出的社交平台。

2.世界各地掀起的聊天软件热潮、Slack的崛起以及中国微博等平台上的某些活动取得的成功,都形成了许多误导。很多人根据这些趋势认为应该向人工智能支持的数字个人助手大举下注。

3.对话界面通常很无效,完成任务的效果比不上其他视觉元素更丰富的解决方案。对话界面很有趣,几十年前就已经在人机交互领域存在。某些应用领域的确效果很好,但实际上,我认为在多数应用环境中,都可以找到更加有效的界面。

B. 深度学习商品化

早在5年前,深度学习创业公司的人才收购就已经取代了iOS移动应用创业公司。很多公司都对深度学习的能力感到惊讶,尤其是计算机视觉的发展,这些技术可以带来更好的结果,还能解决很多新问题。因此,我们才看到谷歌、Faceboook、Twitter、Uber、微软和Salesforce等公司纷纷通过激进的并购战略来弥补短板。

深度学习将在机器学习人才中变得更加普及,但不认为机器学习本身将会商品化。机器学习人才仍将获得极高的溢价。在二线科技公司和科技行业之外的公司(例如底特律汽车巨头)完成了这波收购后,深度学习创业公司过去几年享受的人才收购溢价才有可能消失。

C. 人工智能将成清洁科技2.0

当清洁能源成为完整企业的一部分,而这家企业可以在真正的市场上销售实际产品时,便可起到效果。但为了清洁科技而发展清洁科技却无法奏效,因为它并不能符合客户需求。伟大的企业都要从客户需求开始。怀有伟大使命的企业秉承的愿景也要由客户需求来决定。如果一家组织秉承着社会使命,但却没有构建以客户为中心的愿景,那充其量只能算一家还算有效的慈善组织。伟大的企业会把客户需求放在首位,而不是科技趋势,即便这能给你带来使命感。

绿色能源并不是一个市场,能源才是。太阳能增长的确很快,因为它很经济。当沃伦·巴菲特和伊隆·马斯克争夺市场时,可能表明这的确有商业价值。他们都认为可持续发展是一项重要使命,但他们也都明白,要让企业成为真正的企业,还要把客户放在第一位。使命需要在服务客户和员工需求的过程中来实现。一家根本无法持续发展的企业却秉承着可持续发展的理念,恐怕没有比这更讽刺的事情了。

在《连线》杂志宣称清洁技术的死期后4年,太阳能成为最干净、最便宜的能源,马斯克和巴菲特都进入其中。特斯拉和SolarCity建起了完整的清洁能源王国。

人工智能创业公司现在几乎都是“正在寻找钉子的锤子”。由于这种趋势将在未来12至24个月越发明显,而大企业也将后劲不足,降低对人工智能人才收购的胃口——估计将有一些公司创始人和风险投资家逐渐意识到这一趋势。到那时,过去12个月才决定进入人工智能领域的创业公司通过LinkedIn发给我的宣传资料将会减少。

D. MLaaS二度灭亡

机器学习即服务(MLaaS)的概念已经诞生近10年,一直都没有成功。根本原因在于:知道他们在做什么的人直接使用开源软件,不知道他们在做什么的则完全置身事外。

有很多大公司都通过收购来加强自己的机器学习团队,包括IBM收购Alchemy API、英特尔收购Saffron、Salsforce收购Metamind。但似乎于事无补。

对有能力的企业而言,需要机器学习人才来构建真正可以使用的机器学习模型,因为很难恰当地训练和调试这些事情,而且需要在理论和实践上充分理解这些内容。这些机器学习人才使用的开源工具往往与MLaaS一样,所以可以排除这部分企业。

对没有能力的企业而言,他们不会通过API获取机器学习技术,而是会通过购买应用来解决更高层次的问题。机器学习只是他们解决问题的一个方面。要在内部开发机器学习技术本来就很困难,而要引入数据产品人才,帮助你找到正确的问题和方法来实现机器学习解决方案,更是难上加难。除了拥有强大机器学习和数据产品团队的科技公司外,所有企业都属于这一类。没错,这涵盖整个商业世界,是个很大的市场。如果你相信“软件正吞噬世界”,那就会认为所有行业的所有公司都要在某种程度上成为一家软件公司。同理,所有企业也都要在某种程度上成为数据公司。谷歌和Facebook等顶尖科技公司与科技行业之外的企业在技术实力上的差距已经很大。在数据领域,双方的差距还将更大。

E. 完整的垂直人工智能创业公司确有价值

垂直人工智能创业公司想要解决完整的行业问题,就需要借助专业领域的技能、独特的数据和能够充分利用人工智能技术的产品,才能真正传递核心价值。

虽然多数机器学习人才都任职于消费互联网巨头以及相关的通用科技公司,但许多问题都潜伏在科技之外的其他行业。如果你相信“软件正吞噬世界”,那么所有行业的所有公司都需要成为科技公司。

当你关注垂直领域时,就会发现可以用人工智能更好地满足高层次的客户需求,或者找到没有人工智能时无法满足的需求。这些都是非常好的商业机会,但却需要更强的商业技巧和专业技能。技术人才较为集中的创业公司往往一无所获,他们往往没有意识到这种需求,或者无法谦虚地将自己的商业技巧和专业技能引入其中。

新的完整的垂直人工智能创业公司将在金融服务、生命科学、医疗保健、能源、交通、重工业、农业和材料等领域涌现。这些创业公司将利用专有数据和机器学习模型解决高层次的专业问题。这些创业公司之于人工智能,就像特斯拉和SolarCity之于清洁科技。